Solving for XX
Challenges and Opportunities for Women in STEM
The B.A. Rudolph Foundation is a 501(c)(3) organization that envisions a society in which women have equal access to professional opportunities and development. Its mission champions the educational and professional development of women for whom a small amount of support could make a significant difference.

To reduce cost and protect the environment, this white paper is published on our website at barudolphfoundation.org for the public. Any questions on this report or the work of the Foundation may be directed to: info@barudolphfoundation.org.

Author: Emily Schaub, with edits by Rebecca Davis and Maggie Moore

Graphics: Maggie Moore and Emily Schaub

Copyright © 2017 by the B.A. Rudolph Foundation. All rights reserved.

The text of this publication, or any part, may not be reproduced without written permission from the Board of Directors of the B.A. Rudolph Foundation.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>Executive Summary</td>
</tr>
<tr>
<td>06</td>
<td>The State of Women in STEM</td>
</tr>
<tr>
<td>09</td>
<td>The Leaky Pipeline: An Apt Metaphor?</td>
</tr>
<tr>
<td>13</td>
<td>&quot;Push&quot; and &quot;Pull&quot; Factors: Why Women Leave STEM</td>
</tr>
<tr>
<td>17</td>
<td>Opportunities in STEM</td>
</tr>
<tr>
<td>19</td>
<td>Solutions and Recommendations: Getting Women to Stay</td>
</tr>
<tr>
<td>22</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Executive Summary

Over the past five decades, women in the United States have made incredible strides in achieving equal representation in education and the workplace. Today, women earn 57 percent of all bachelor’s degrees and make up 48 percent of the labor force. Certain fields, however, have not seen the same growth as others. In particular, women are less present within science, technology, engineering, and mathematics sectors - known collectively as STEM.

Only 12 percent of women’s bachelor’s degrees are in STEM fields, compared to 19 percent of men’s. Even more worrying, after college, women in STEM leave the workforce in much higher numbers than their male counterparts - only five percent of college-educated women are working in STEM two years after graduation, and only three percent after 10 years. This phenomenon has been called the “leaky pipeline” - a metaphor that suggests women “leak” through various cracks along the professional development path from education to advanced careers.

Critics of this metaphor say it ignores women’s voluntary shift away from STEM, but it is clear that women leave the field in higher numbers than men, so it is important to consider the factors that either “push” women out of STEM or “pull” them into other fields. Many women do not merely choose to transition out of STEM, but are forced out, by factors such as stereotypes, lack of role models, and an inflexible work environment. These affect women to a much greater extent than men, and explain the difference in retention rates.

STEM represents a significant opportunity for professional women, both in job availability and in salary. STEM is the fastest-growing job market in the country and one that will require many more well-trained employees in the next several years. It is also a highly-paid field: STEM majors earn around $300,000 more than non-STEM majors, and while women in STEM are still paid less than men, the salary benefit of being in STEM is even higher for women than for men. In addition, women in STEM are highly beneficial for the field itself because the inclusion of diverse viewpoints will drive higher levels of innovation and creativity.

In order to overcome the challenges that women in STEM face and meet the growing demand for STEM employees, women must:

1. Have hands-on experiences outside of the classroom in STEM fields, including internship opportunities;
2. Receive support through mentorship from female role models; and
3. Gain access to professional development opportunities.
CHALLENGES & OPPORTUNITIES FOR WOMEN IN STEM

**STEM**

**Underrepresentation**
Less than $\frac{1}{4}$ of STEM jobs are held by women.

**Women by Sector**
Only 14% of engineers are women, but engineering makes up $\frac{1}{3}$ of STEM jobs. By contrast, 40% of physicists and life scientists are women - those represent only 12% of all STEM jobs.

**Job Growth**
STEM jobs show 17% growth over the last decade, compared with 10% in other fields.

**STEM Salaries**
Women in STEM make 33% more than women in other fields; Men in STEM make 25% more than men in other fields.
The State of Women in STEM

STEM: A Definition

The academic and job sectors of science, technology, engineering, and mathematics are collectively known as “STEM” fields. Though the field is imprecisely defined, and there is some debate about what professions fall within that umbrella term, the U.S. Department of Commerce Economics and Statistics Administration defines four broad sectors. Nearly half of STEM jobs are computer occupations and an additional 28 percent are related to engineering.¹ Other relevant job sectors include life and physical sciences (13 percent), and technical STEM mangement (8 percent). In keeping with that definition, business, healthcare, and social science fields are not considered STEM fields in the context of this report.

Underrepresentation of Women in STEM

Men traditionally dominate STEM fields, outnumbering women at every stage of STEM education and in the workplace. Despite significant progress toward equality in education and other fields, women earned 57 percent of bachelor’s degrees in 2010, but only 18 percent of computer and IT degrees.²

In the workplace, women in STEM also find themselves in the minority. Although women comprise nearly half of the employed population in the United States, they fill less than a quarter of STEM jobs.³ Again, though women have celebrated success in other fields, this figure remains stubbornly unchanged.

Women represent nearly half of the work force, but fill less than a quarter of STEM jobs.

Figure 1: Women are nearing equal representation in the workforce, but not in STEM positions.


Broken down by sector, these numbers reveal that women are present across STEM, but display an even greater disparity in engineering and STEM management positions. Though engineering is the second-largest contributor to STEM jobs, only about 14 percent of them are filled by women. Conversely, the sector in which women have the most presence - physical and life sciences - provides only 12 percent of the STEM jobs.

**Figure 2:** Women are most represented in physics and life sciences, which make up only 12% of STEM jobs. They are most underrepresented in engineering, which is one of the largest STEM sectors and contributes one-third of STEM jobs.

*Data obtained from: Beede, D. et al. "Women in STEM: A Gender Gap to Innovation."*
**STEM and the Gender Wage Gap**

Working women, in any field, are all too familiar with the discrepancy between men’s and women’s wages, or the gender wage gap. On average, women earn around **80 cents** for every dollar earned by a man, and women of color earn even less than that. In STEM, that gap shrinks somewhat: on average, women in STEM earn **86 cents** to the men’s dollar.\(^4\) However, in STEM fields, far more so than in other jobs, the gap widens steeply with career progression. While in the immediate post-education years the difference is not significant, men’s salaries rise much faster than women’s, so that by ages 45-49, when the gap is at its peak, men in STEM are earning 60 percent more than their female counterparts.\(^5\) This is compared to a gap of approximately 50 percent in non-STEM professions in that age bracket, where the growth of men’s salaries is much more gradual. Over time, the STEM wage gap widens significantly and eventually overtakes the non-STEM gap. It is worth noting that STEM sectors vary in wage gaps, with engineering showing the smallest difference - only seven percent.\(^6\) This is particularly telling given that, again, engineering is the field in which women are the most underrepresented.

![STEM Annual Earnings by Age](chart1.png) ![Non-STEM Annual Earnings by Age](chart2.png)

**Figure 3:** The gender wage gap in STEM is smaller, on average, than in other fields, but it grows significantly more over time than other sectors.

*Data obtained from:* Carnevale, A., Smith, N., & Melton, M. *STEM*.

---


The Leaky Pipeline:
An Apt Metaphor?

For several decades, those concerned about the state of women in STEM fields have described a “leaky pipeline”: a faulty channel from grade school to the workforce that fails to advance young women who excel in science and math along the career ladder. Even when young girls are exposed to and engaged in science and math through programs specifically designed to target gender inequities, the “leakiness” of that pipeline suggests that their advancement into STEM careers is far from assured.

![Women Who Graduate From College](image.png)

**Figure 4:** Only 12 percent of female college graduates hold STEM degrees. After graduating, those women continue to leave STEM as they progress through the workforce.

*Data obtained from: Carnevale, A., Smith, N., & Melton, M. STEM.*

On the other hand, some have recently argued that the leaky pipeline metaphor is no longer relevant, and that the STEM field is no less likely than others to experience this kind of drop off. Critics argue that in every sector, both women and men are likely to have many interests and strengths, and diversion to other fields is not so worrying. Aptitude in math or science does not preclude aptitude in other fields - in fact, the opposite is true. In general, women with the highest math scores in high school are also likely to have the highest verbal skills - smart women are smart across the board.⁷ Some argue that deeming those with high math scores who choose to pursue non-math majors “drips” from the pipeline does them an injustice by ignoring their other strengths and their preferences.

---

To what extent, then, is the movement of women away from STEM fields a concern?
To draw conclusions about the answer to this question, it is important to understand why women leave STEM. In order to do that, we first identify specific “leaks” along the pipeline - points at which girls and women move away from STEM, despite academic prowess or career opportunities. This report identifies five such pivotal junctures:

1. Entering college
2. During college
3. Entering the workforce
4. Staying in the workforce
5. Advancing in the workforce

**Entering College**
A number of studies show that in spite of stereotypes about “masculine” and “feminine” subjects (discussed below), boys and girls through middle school perform more or less equally in math and science courses and standardized tests. In high school, differences become somewhat more pronounced, with boys more likely than girls to enroll in higher level math and science courses and choose to take standardized tests in engineering- and computing-related fields in order to prepare for a college degree in those fields. The degree to which young women and young men are prepared for enrollment in STEM undergraduate programs is the first important junction where women leave STEM: young men are much more likely than young women to enroll in college pursuing STEM majors. About 39 percent of first-year male college students report that they intend to pursue a STEM bachelor's degree, compared to only 25.3 percent of their female classmates.

These figures are even more segregated by gender when STEM is divided into subsectors. Although women outnumber men in life sciences (16 percent of women and 11 percent of men intend to major in life science), women are staggering underrepresented in engineering (six percent of women and 19 percent of men), computer science (one percent of women and six percent of men), and physics (0.3 percent of women and one percent of men).

---


10 Ibid. p. 18.

11 Ibid.
**CHALLENGES AND OPPORTUNITIES FOR WOMEN IN STEM**

![Women's Bachelor's Degrees by Sector](image)

**Figure 6:** Women's bachelor's degrees vary significantly by sector.

*Data obtained from:* Rampell, C. “Women falling behind in STEM bachelor's degrees.”

![Engineering and Computing Degrees Earned by Women](image)

**Figure 7:** Women’s representation in computing degrees has been falling steadily since 1985.

*Data obtained from:* Corbett, C. & Hill, C. *Solving the Equation: The Variables for Women's Success in Engineering and Computing.*

---

**During College**

The second key point when women leave STEM is during college, when intended majors culminate in bachelor’s degrees - or not. In recent decades, women have steadily increased the number of bachelor’s degrees they obtain overall - in 2013, they earned 57 percent of bachelor’s degrees awarded\(^{12}\) - but they still earned fewer STEM degrees than men. 19 percent of the total number of bachelor's degrees earned are in STEM fields, but this drops to 12 percent when only those earned by women are considered.\(^{13}\) This means that less than half of women who enter college intending to pursue a STEM degree graduate with one.

Figures broken down by sector reveal even more worrying discrepancies. Though women have greatly increased their representation in sectors such as life science - they now earn more than half of biology degrees - and earth sciences, such growth is not mirrored in other sectors.\(^{14}\) In fact, women’s representation across STEM degrees has dropped since the 1970s and 1980s. Women were making steady progress in the computing field, in 1985 earning around 37 percent of computing degrees, that number has since declined. In 2013 only 18 percent of computing degrees were earned by women. While engineering degrees have slowly trended upward, there is still a long way to go. Women earned only 19 percent of engineering degrees in 2013.\(^{15}\)

---


Entering the Workforce

Graduation is another pivotal point: earning a STEM degree does not necessarily result in women with STEM careers. While 53 percent of biological scientists are women, they represent only 26 percent of computer scientists and mathematicians and 12 percent of engineers. Of the women who earn a STEM bachelor’s degree, less than half (42 percent) go on to work in their field within two years of graduating. Employment of women in STEM fields is also highly disparate among sectors. Only one third of women holding a bachelor’s degree in computer science were employed as such in two years.

Staying in the Workforce

Retention of women in STEM fields is the fourth critical point where women drop off. Of the five percent of women with bachelor’s degrees who are working in the STEM field after two years, only three percent are still in the field after 10 years, and that number only continues to decline with career progression. Female engineers - already a scarce commodity - start to diverge in their quit rates from their male colleagues after around 15 years, and continue to decline steeply while men level off.

Advancing in the Workforce

Finally, women in STEM do not advance up the career ladder to the same extent as men. The National Center for Women in Technology (NCWIT) reports that there is a critical point at the mid-career level - around 10-14 years after entering the workforce - where women leave their STEM jobs in droves, at a rate as high as double that of men, rather

---


than advance to the next career level. Perhaps most important is the rate at which female STEM workers are represented in leadership roles. One study suggests that only 15 percent of those positions are held by women. Women are often more hesitant than men to talk about promotion and use language that conveys power, which can act as a barrier to career advancement, particularly where promotions are dictated by proof and metrics.

"Push" and "Pull" Factors: Why Women Leave STEM

If women in STEM leave their jobs in higher numbers than men in STEM and than women in other fields, and it is clear that they do, the question remains as to why. Are they pulled by competing interests or other career opportunities, or are they pushed by negative and discriminatory factors within the STEM field?

Some highly intelligent and STEM-trained women opt to move outside of the field, in order to pursue other opportunities. As women advance in STEM careers, too, they may transition into managerial positions, of which only a very few are considered STEM occupations and counted as such. However, women also face stereotypes and gender biases, a lack of role models, and an inflexible workplace culture. These “push” factors can force women out of the STEM field, or slow their progress along the STEM career ladder.

Stereotypes and Gender Biases

It is no secret that women face discrimination and sexism in the world of STEM. In 2005, then-president of Harvard University Larry Summers suggested that differences in aptitude explain the gender gap in technology sectors, and in 2017 Google engineer


23 Ibid.


"Both men and women have been proven to blindly prefer male candidates when making hiring decisions."

James Damore pointed to biological differences between genders to excuse the absence of women in STEM. Both comments sparked public outrage, leading Summers to resign and Damore to be fired.

Yet these are not isolated incidents of sexism. Study upon study has shown that men are more likely to be favored for employment opportunities and to be paid more highly for them, regardless of true ability. In fact, both men and women have been proven to blindly prefer male candidates when making hiring decisions. This is true in all fields, but is more pronounced in STEM. Stereotypes about women’s inferior ability also affect women’s reporting of their abilities and even their performance. Women are more likely than men to underestimate their skills in math and science. A 2008 global study suggested that the size of gender differences in standardized mathematics test scores mirrored a country’s level of inequality, with the smallest differences in scores in the world’s most gender-equal societies.

The effect of this is that women hesitate to pursue STEM-related educational or professional opportunities. Girls who are taught that they have a biological disadvantage in math and science are far less likely to pursue a STEM degree in college or a STEM career. When they do, prejudice and discrimination becomes a threat to their career advancement, and a constant “push” out of the field. NCWIT reports that women in technology were significantly less likely than men or women in other fields to report that management decisions were made fairly, that their managers trust them, that their performance was fairly evaluated, or that they felt generally safe voicing their opinions. This easily becomes a hostile work environment, in which women do not feel respected or have access to equal salaries or other resources, eventually creating pressure for women to leave STEM.

---


28 Ibid.

Lack of Role Models

In any field, networks and professional connections are essential for finding a job, negotiating salaries, and navigating career ladders. Evidence, however, shows that women lack these support systems, especially in STEM. Part of the reason behind this is the cyclical nature of female departure from STEM: because women leave at a higher rate, there is a shortage of women in advanced STEM positions who can serve as mentors for the next generation. In turn, the next generation of women in STEM feels alienated and unsupported, and they, too, eventually leave. Faculties, especially in engineering and technology disciplines, have been found to be dominated by white and Asian men, with representation of women and other minorities sorely lacking. One study found that 47 percent of women in technology and 51 percent of female engineers did not have mentors, and that one third of women working for the private sector in science, engineering, or technology felt “extremely isolated.”

Especially in the face of discrimination and stereotypes as described above, “mentors play a crucial role in motivating [women] to stay committed, aspire to higher achievements, leverage key opportunities, and refuse to give up.” The “refusal to give up” piece is key: if women lack the support system that exists for men in STEM fields, their retention and advancement in their careers suffers. Women in STEM sectors who did not have sponsors were around three times more likely than those who did to consider leaving the field.

"Mentors play a crucial role in motivating [women] to stay committed, aspire to higher achievements, leverage key opportunities, and refuse to give up."

---


Inflexible Workplace Culture

Competing demands for time affect women in all professions, but STEM fields have been shown to be particularly uncompromising. Women in such fields have reported difficulty in designing flexible work schedules, even if these are formally allowed. Some sectors and professions also create pressure on workers to publish regularly, and women who take extended time off - for parental leave, for instance - can find it hard to recover.

"Women in STEM, more than in other fields, feel that they cannot take time off to care for their families, or that any career or publication gaps preclude advancement to higher positions."

As in other fields, STEM women are more likely than their male coworkers to reduce their working hours in order to fulfill family responsibilities. Women in technological professions who had a spouse or partner were four times more likely than men to be the primary caretaker of children and the household, and twice as likely to have a partner working full-time. Thus, in this industry women more than men reduce their working hours or leave their jobs for family reasons.

While having children could certainly be considered a “pull” factor, toward something positive rather than away from something negative, the concern is that the nature of the STEM workplace is less flexible than other environments. Women in STEM, more than in other fields, feel that they cannot take time off to care for their families, or that any career or publication gaps preclude advancement to higher positions and contribute to the shift away from STEM.

35 Ibid. p. 36.
Opportunities in STEM

When women are pushed out of the STEM field by factors such as those previously described - namely stereotypes, lack of role models, and inflexibility of the work environment - they miss out on the huge opportunities that STEM promises. They lose out to a greater extent than women leaving other fields, because of the economic and job growth predicted in the STEM field, higher salaries as compared to other fields, and innovation that is driven by inclusion of diverse perspectives and individuals.

Growth of STEM

In the last decade, STEM jobs have skyrocketed - both in absolute number and in proportion of the total jobs. By next year, Georgetown University predicts, nearly eight million STEM jobs will exist in the United States. This is up from less than seven million since 2008, and more than recovers from losses during the economic recession. This represents a 17 percent increase, compared to the projected 10 percent increase across all job fields. The same researchers also predict that STEM’s share of U.S. jobs will be 4.9 percent by 2018, an increase from 4.4 percent in the last decade.  

Of those eight million STEM jobs, more than half are expected to be computing jobs, a sector in which women now earn only 18 percent of bachelor’s degrees. Another 28 percent of jobs will be in engineering - and likewise only 19 percent of engineering bachelor’s degree earners are women. These two sectors, then, will represent 6.3 million jobs next year, and women’s underrepresentation in those fields is a huge disadvantage to job-seekers, and also to employers who are looking to fill growing numbers of vacancies.


Ibid. p. 18
Higher Salaries

STEM jobs are also some of the most highly paid in the United States.\(^3^8\) Not only are gender wage gaps smaller, on average, in STEM jobs, but absolute salaries are also higher: STEM majors have been shown to earn, over their careers, $300,000 more than non-STEM majors.\(^3^9\) This “STEM premium” is also significantly higher for women than for men: women in STEM earn 33 percent more than women in other fields, while for men the difference is only 25 percent.\(^4^0\) Even internships in the male-dominated STEM fields of engineering and computer sciences are the most likely to be paid: 87 percent of interns in those sectors are paid, compared to 39 percent and 35 percent in the more female-dominated health and social sciences.\(^4^1\) By avoiding or turning away from STEM fields, women miss out on more highly paid work and forgo a significant amount of earnings at every career level.

Diversity for Innovation

When women participate in STEM, they reap the benefits of more job opportunities and higher wages, but the sector as a whole also benefits. The projected job growth in the coming years dictates that the field will need even more STEM-trained workers. When three-quarters of women who earned a bachelor's degree in a STEM field have left within 10 years of graduation “the industry... fails to capitalize on the talent of a vast majority of women.”\(^4^2\) Those 75 percent, and all the others who were pushed out of STEM even before college, represent severe and detrimental losses to productivity.

Women not only contribute to the field’s productivity, but also enhance its quality. Evidence shows that teams that include both women and men are more creative and efficient.\(^4^3\) Having a diverse team, including in leadership positions, allows for a more thoughtful and productive exchange of diverse ideas.\(^4^4\) Particularly given the diversity of consumers, these diverse ideas are critical. For example, early voice-recognition systems, created by relatively uniform developers, were calibrated only to men’s voices, so that “women's voices were literally unheard.” More tragically, when male engineers created the first airbags, they failed to consider the different needs of women’s bodies, with devastating results.\(^4^5\)


\(^3^9\) Ibid. p. 29.


\(^4^3\) Ibid.


Solutions and Recommendations: How to Get Women to Stay

STEM fields offer women unique opportunities, and women’s involvement and leadership in STEM encourages innovation and creativity. Yet they face significant barriers to both entry into STEM education and advancement within STEM careers. In order to overcome these barriers, it is critical to support them at every stage, specifically through internships, mentorship, and professional development.

Internships and Fellowships

Internships, fellowships, and other practical or experiential opportunities are vital parts of learning about a field, and can help women make the transition from academic to professional life. Internships allow students to gain real work experience and develop professional skills, so students who have completed at least one internship are more competitive in the job market. Given the growing interest among STEM graduates in a non-academic career, and given the complementary growing demand for STEM practitioners as discussed above, practical skills developed in internships will continue to become even more valuable.46

These experiences also expose students to the work environment, providing women the opportunity to experience a STEM workplace and preparing them to navigate it, addressing the 75 percent of women who graduate with a STEM bachelor’s degree but leave the field at some point in their careers. Internships can also provide clues about the culture of a particular company and reveal evidence of sexism, which can affect women’s decisions to pursue employment there.47 This, in turn, can pressure employers to be more gender-inclusive, or risk losing the interest of potential hires.

Internships and similar programs are highly valuable for a student pursuing or considering a STEM career. Former interns enter the workplace better prepared, in terms of both practical skills and an understanding of the work environment, which can increase retention rates. STEM education programs should therefore promote internships as part of student learning, especially for women.


**Mentorship**

As discussed earlier in this report, women in STEM are unlikely to have mentors or role models, which contributes to the lack of support women feel in the workplace resulting in their divergence from STEM. Indeed, about half of women in technological fields report that mentorship would help keep them in the field, compared with only a third of men.\(^\text{48}\) Having a more advanced colleague to offer support and career guidance has huge impacts for women early in their careers. Technical women with a sponsor reported being 27 percent more likely than other women to ask for a raise, which has key implications for closing the wage gap, especially at more advanced career levels. They were also 22 percent more likely to ask for important assignments, which increases their visibility to their superiors and can make them more well-placed for promotions.\(^\text{49}\)

Mentors can also help women transition from STEM education - both before and during college - to STEM professions. Often, women are unaware of specific opportunities that exist within STEM that align to their particular career interests and goals. For instance, women might be more likely to choose STEM careers if they can see the societal impacts of those careers.\(^\text{50}\) Mentors and role models can help to make sure women with high levels of mathematics and science skills know about these options and can access them. **Mentors should be identified as early as possible for female STEM students.**

---


Professional Development

Finally, there are opportunities for professional growth that women miss out on, because the STEM workplace is more accessible to men. These include, in particular, informal professional development opportunities, which men in technology report finding at a much higher rate than women: 82 percent compared to 62 percent.\(^1\) These can range from personal relationships with peers to skills-building outside the office, either through a private course or on one’s own.\(^2\) Women are more likely than men (48 percent compared to 40 percent) to rely on professional conferences or association meetings to develop these skills.\(^3\) Much of this gap is likely related to mentorship and workplace culture: women feel less comfortable seeking professional development in traditionally male-dominated workspaces, and without the support of role models they can struggle to identify them. However, as NCWIT points out, when these opportunities are provided outside of, or in addition to, normal working hours, women’s competing responsibilities may prevent them from taking advantage of them. It is important therefore, that formal opportunities for professional development be offered to women inside the workplace.


\(^{3}\) Ibid.
Conclusion

The gender disparity in STEM increases throughout the span of a career - at every level women face a more significant threat to retention than men, and the field suffers as a result. Moreover, when women are not supported by equal treatment in the workplace, strong role models, and flexibility to meet other responsibilities, they lose out on the opportunity to participate in the fastest-growing job market that also provides the most competitive salaries. Yet internships, mentorship, and professional development can help address these challenges and prevent these losses.

We conclude with a call to everyone to join our efforts to support women in STEM. From 2012-2017, the B.A. Rudolph Foundation supported 57 women, 12 of whom were women in STEM (pictured below).\textsuperscript{54, 55} We hope to support even more women in the future but
can only do that with your help. From serving as a mentor to making a donation, there are a variety of ways you can contribute to encourage women to participate and succeed in STEM fields. If you are interested in any of the programs listed below or have questions, please email info@BARudolphFoundation.org. With your help, we can support the educational and professional development of even more women in STEM. For them, a small amount of support could make a significant difference.

<table>
<thead>
<tr>
<th>Donor</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Time Commitment:</strong> 5 minutes, anytime!</td>
</tr>
<tr>
<td><strong>Duties:</strong> Go to our website, click &quot;Donate,&quot; and enter your gift! (Remember, it’s also tax deductible)</td>
</tr>
<tr>
<td><strong>Impact:</strong> Every donated dollar goes directly to a scholarship, not our operating costs. Everything helps: just $65 will buy groceries for one scholar for a week, and $1,500 funds one scholar for one month!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mentor</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Time Commitment:</strong> 6 hours a year, between May-September</td>
</tr>
<tr>
<td><strong>Duties:</strong> Meet with a scholar once a month during the summer. Offer professional advice and networking.</td>
</tr>
<tr>
<td><strong>Impact:</strong> Helping a scholar navigate her new field and make important career decisions is one of the most important and impactful ways to support our women. They’ll carry your wisdom with them for life!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambassador</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Time Commitment:</strong> ~3 hours, January-March; September-November</td>
</tr>
<tr>
<td><strong>Duties:</strong> Around three phone calls/emails a year, plus minimal follow-up, with information about our work.</td>
</tr>
<tr>
<td><strong>Impact:</strong> The more colleges and organizations that know about us, the more women have access to our support!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application Review Committee Member</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Time Commitment:</strong> ~18 hours over 2 weeks, March and/or April</td>
</tr>
<tr>
<td><strong>Duties:</strong> Participate in a 1 hour orientation, independently evaluate applications for one of the three internship scholarships, and discuss top applicants in a 1-2 hour selection meeting (held in-person or via conference call).</td>
</tr>
<tr>
<td><strong>Impact:</strong> Help select future scholarship recipients!</td>
</tr>
</tbody>
</table>

---

54 Number accurate as of November 2017.
55 Women in STEM supported by the B.A. Rudolph Foundation: Row one, from left to right: 2015 STEM Scholars Erika Marmol, Juliette Rando, Katie Tsai, Marie Vastola; Row two, from left to right: 2016 STEM Scholars Ellie Fratt, Kristina Rothchild, Racquel Sohasky, Elizabeth Wicks; Row three, from left to right: 2017 STEM Scholars Vasiliki Chioti, Ellie Lefkovich, Priya Shukla, Bridget Smith.

23
P.O. Box 21251
Washington, DC 20009
www.barudolphfoundation.org

Email: info@barudolphfoundation.org
Facebook: barudolphfoundation
Twitter: @BARudolphFND